4 resultados para yellow fever virus

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Juvenile hormone (JH) is the central hormonal regulator of life-history trade-offs in many insects. In Aedes aegypti, JH regulates reproductive development after emergence. Little is known about JH's physiological functions after reproductive development is complete or JH's role in mediating life-history trade-offs. By examining the effect of hormones, nutrition, and mating on ovarian physiology during the previtellogenic resting stage, critical roles were determined for these factors in mediating life-history trade-offs and reproductive output. The extent of follicular resorption during the previtellogenic resting stage is dependent on nutritional quality. Feeding females a low quality diet during the resting stage causes the rate of follicular resorption to increase and reproductive output to decrease. Conversely, feeding females a high quality diet causes resorption to remain low. The extent of resorption can be increased by separating the ovaries from a source of JH or decreased by exogenous application of methoprene. Active caspases were localized to resorbing follicles indicating that an apoptosis-like mechanism participates in follicular resorption. Accumulations of neutral lipids and the accumulation of mRNA's integral to endocytosis and oocyte development such as the vitellogenin receptor (AaVgR), lipophorin receptor (AaLpRov), heavy-chain clathrin (AaCHC), and ribosomal protein L32 (rpL32) were also examined under various nutritional and hormonal conditions. The abundance of mRNA's and neutral lipid content increased within the previtellogenic ovary as mosquitoes were offered increasing sucrose concentrations or were treated with methoprene. These same nutritional and hormonal manipulations altered the extent of resorption after a blood meal indicating that the fate of follicles and overall fecundity depends, in part, on nutritional and hormonal status during the previtellogenic resting stage. Mating female mosquitoes also altered follicle quality and resorption similarly to nutrition or hormonal application and demonstrates that male accessory gland substances such as JH III passed to the female during copulation have a strong effect on ovarian physiology during the previtellogenic resting stage and can influence reproductive output. Taken together these results demonstrate that the previtellogenic resting stage is not an inactive period but is instead a period marked by extensive life-history and fitness trade-offs in response to nutrition, hormones and mating stimuli.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

From 1889 to 1934, Florida's nurses belonging to a new group of professional women ushered in a pioneering phase of public health nursing in Florida. During this era, the nurses' ability to confront health and professional issues varied a great deal but in quiet and forceful ways they tackled cultural and environmental problems to assist people who were ill or help prevent people from becoming ill. This dissertation places the development of professional public health nursing in its social context by uncovering the relationships public health nurses formed with clubwomen, the medical profession, city leaders, midwives, and others. In 1888, there were few graduate nurses in the state, no state board of health and no organized nursing service to respond to Jacksonville's great yellow fever epidemic. By 1934, national and state leaders of public health nursing had built up the profession to become an essential part of the State Board of Health's service to the community. Between these milestones, in the era of white supremacy and Jim Crow, public health nurses combined their professional training with a pioneer spirit of innovation and risk-taking. In the predominately rural state, the public health nurses' resolve to overcome environmental hazards and cultural obstacles stands out as they attempted to reach those who were unserved or underserved by modern medicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semiconductor nanocrystals, also known as quantum dots (QDs), have been used in studies involving mice and human tissues, but never before in research on insects. We used QDs to study the distribution of two neuropeptides in the Aedes aegypti mosquito, the vector of both dengue and yellow fever. These neuropeptides play a significant role in the production of juvenile hormone, a hormone that controls biting behavior, metamorphosis, and reproduction throughout the life of the mosquito. The two neuropeptides allatostatin-C (AS-C) and allatotropin (AT) function as inhibitory (AS-C) and stimulatory (AT) regulators of juvenile hormone synthesis in the corpus allatum gland. In other insects, they also affect heart rate, gut movement, and nutrient uptake. Conjugating these neuropeptides to quantum dots via a streptavidinlbiotin link, we were able to expose the mosquito corpus allatum and abdomen to allatostatin-C and allatotropin and then to visualize their distribution under UV light using confocal and compound light microscopy. Histological sections of the whole mosquito, incubations of tissues with conjugates (in vitro), and microinjections of conjugates into the mosquito (in vivo) were performed. The results showed that quantum dots can be used to detect neuropeptide distribution in the mosquito. The more we understand about these neuropeptides and juvenile hormone, the more we can contribute to stopping the spread of infectious diseases, such as dengue and yellow fever.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyanobacteria (blue-green algae) produce a diverse array of toxic or otherwise bioactive metabolites. These allelochemicals may also play a role in defense against potential predators and grazers, particularly aquatic invertebrates and their larvae, including mosquitoes. Compounds derived from cyanobacteria collected from the Florida Everglades and other Florida waterways were investigated as insecticides against the mosquito Aedes aegypti, a vector of dengue and yellow fever. Screening of cyanobacterial biomass revealed several strains that exhibited mosquito larvicidal activity. Guided via bioassay guided fractionation, a non-polar compound from Leptolyngbya sp. 21-9-3 was found to be the most active component. Characterization revealed the prospective compound to be a monounsaturated fatty acid with the molecular formula C16H30O2. This is the first evidence of mosquito larvicidal activity for this particular fatty acid. With larvicidal becoming more prevalent, fatty acids should be explored for future mosquito control strategies.^